چرا رادیکال 2گویا نیست - ریاضیات
سفارش تبلیغ
صبا ویژن

ریاضیات
 
قالب وبلاگ
لینک دوستان

چرا رادیکال 2گویا نیست

 
 

یکی از زیباترین استدلالهایی که ریاضی دانان یونان پس از شناخت رابطه فیثاغورث و آشنایی با مثلث قائم الزاویه ای که دو ضلع مجاور به وتر آن بطول 1 بود انجام داده اند آن است که “رادیکال دو” (2√) یا همان ریشه دوم عدد 2 نمی تواند یک عدد گویا باشد.

استدلال آنها بسیار ساده بود در نظر می گیریم که ریشه دوم عدد 2 بصورت یک کسر گویا (2√=a/b) بیان شود. همچنین فرض می کنیم که a/b کسر ساده شده می باشد و صورت و مخرج مقسوم علیه مشترک ندارند. در آنصورت اگر طرفین معادله را در خود ضرب کنیم (یا به توان دو برسانیم) باید داشته باشیم : a2/b2=2

بنابراین خواهیم داشت که : a2=2b2

رابطه اخیر نشان می دهد که a2 یک عدد زوج می باشد، بسادگی می توان نتیجه گرفت که a نیز باید عدد زوج باشد (چرا؟) ، بنابراین اگر a را بصورت 2t نمایش دهیم خواهیم داشت : 4t2=2b2

اگر معادله بالا را ساده کنیم خواهیم داشت که : b2=2t2

یعنی b هم یک عدد زوج می باشد(چرا؟) ، بنابراین a و b هر دو مقسوم علیه مشترکی مساوی 2 دارند و این مخالف فرضی است که در ابتدا انجام دادیم. بنابراین نمی توان عدد رادیکال دو را بصورت یک کسر گویا نمایش داد


[ چهارشنبه 91/11/11 ] [ 12:16 عصر ] [ محمد رضا جبین پور ] [ نظرات () ]
.: Weblog Themes By SibTheme :.

درباره وبلاگ

در هر چیز از جمله یک نظریه ریاضی زیبایی را میتوان درک کرد اما نمی توان توضیح داد.
امکانات وب


بازدید امروز: 43
بازدید دیروز: 87
کل بازدیدها: 290722